L’intérêt des Tanker est de pouvoir utiliser du retardant, liquide onéreux, certes, mais polyvalent et très efficace. Le retardant a surtout le désavantage de ne pas se trouver à l’état naturel, il n’est donc pas envisageable de l’écoper quelque part (ou alors, la Méditerranée est bien plus polluée que ce qu’on veut bien nous raconter !). Il doit donc être pompé jusque dans les soutes des avions.
La présence d’avions travaillant au retardant au sein du dispositif national a entraîné la création d’un réseau de stations de remplissage. Ici celui de Nîmes en 2019.
En France, ces différentes stations sont baptisées « Pélicandrome ». Elles tirent bien évidemment ce nom de l’indicatif radio historique des avions de la Sécurité Civile, porté successivement par les Catalina, les CL-215 et les CL-415, mais aussi par les DC-6 dans les années 80. Elles auraient pu aussi s’appeler « Trackerodrome » et désormais « Milandrome » mais il s’avère que les CL-415 les utilisent aussi de temps en temps même si le retardant n’est pas leur armement primaire
Il arrive que les « Pélican » passent au Pélicandrome, mais ce n’est pas là leur vocation première, ici à Marseille.
Les pélicandromes en France
Les pélicandromes fixes sont des installations permanentes avec des réserves de retardant installées sur différents aérodromes, positionnés stratégiquement essentiellement sur le pourtour méditerranéen (12 stations) et la Corse (rien moins que 5 plateformes.)
A celles-ci viennent s’ajouter les installations de Cahors, Valence, Aubenas, Bordeaux – décisif pour les opérations dans les Landes – et Limoges, la station retardant fixe la plus au nord. Pour la plupart, ces stations sont conçues et entretenues par la société qui assure aussi la fabrication du retardant, la Biogema.
Quelques cas particuliers
Le pélicandrome de Nîmes est le seul à être maintenu opérationnel tout au long de l’année, notamment pour les entraînements et la formation des personnels au sol. Il est doté de deux points de ravitaillement en eau et de quatre au retardant.
Plus efficace que l’eau seule, le retardant implique une doctrine d’emploi adaptée et une infrastructure spécifique. (Photo : Alex Dubath)
Il est équipé de grilles permettant aussi la reprise (le déchargement) du retardant et son recyclage en cas de besoin. Il était armé par les équipes du SDIS 30 jusqu’en 2020 où il est passé à des équipes de la Sécurité Civile.
Le pélicandrome de Marignane, qui fut longtemps le plus actif de France quand la BASC y était basée jusqu’en 2017, reste régulièrement mis à contribution au milieu de l’ancienne base désormais déserte. Il est armé par des équipiers issus du SDIS 13 bien que l’aéroport est couvert, autant pour la sécurité incendies des installations, des aéronefs ou le secours aux personnes, par des équipes spécialisées du Bataillon des Marins-Pompiers de Marseille.
Le premier Dash à Marseille en 2005.
De nouvelles installations pourraient être créées prochainement dans la partie sud de l’emprise aéroportuaire, un appel d’offres vient d’être passé en ce sens et ces nouvelles installations pourraient être opérationnelles dès 2022.
La station de remplissage de Béziers est un autre cas particulier car elle est aussi la base principale des ABEL sous contrat avec le Conseil Général de l’Hérault mais elle est aussi régulièrement fréquentée par les moyens nationaux.
Le Pélicandrome de Béziers-Vias est utilisable autant par les avions de la cellule départementale de l’Hérault, qui y sont basés pour la saison, que par les avions du dispositif national.
Les pélicandromes mobiles
C’est sans doute un concept promis à un bel avenir. La Sécurité Civile, en particulier l’UIISC 1 de Nogent le Rotrou, en collaboration avec le SDIS du Morbihan, dispose d’un pélicandrome mobile constitué principalement d’un camion citerne chargé de prémélange de FireTroll 931 et des accessoires, pompes et tuyaux, permettant d’établir rapidement un pélicandrome mobile pouvant remplir les Dash là où le besoin pourrait s’en faire sentir. Les UIISC disposent de détachement DIR (Détachement d’Intervention Retardant) et sont familiers de l’usage de cette substance même si les produits ne sont pas exactement les mêmes que ceux largués depuis les avions. Une première expérience de déploiement fut organisée sur la Base Aérienne de Tours en 2018.
Comme démontré à Tours en 2018, un pélicandrome peut s’organiser relativement facilement sur un parking d’aérodrome, près d’un poteau d’incendie. (Photo : F. Arnould)
Ce dispositif a été déployé à Angers pour l’été 2020 et a été activé le 14 septembre pour que le Milan 76, prépositionné là en raison des risques sur la région, puisse effectuer plusieurs largages à Salbris dans le Loir et Cher. Quelques jours plus tard, l’avion intervenait à nouveau à quelques km au sud du Mans, prouvant tout l’intérêt de cette installation.
Milan 76 lors de son premier remplissage opérationnel le 14 septembre 2020 sur le pélicandrome mobile d’Angers. (Photo : Cyril Defever)
L’aéroport d’Angers permet de disposer d’une base opérationnelle pour la défense du secteur nord-ouest. En cas de besoin, on peut très bien imaginer le pélicandrome être déployé ailleurs, les aérodromes compatibles, civils comme militaires, ne manquant pas (Deauville, le Havre, Évreux, Orléans, Lille voire Poitiers pour n’en citer que quelques uns).
C’est dans cette même logique qu’un Dash est aussi venu tester les capacités de la plateforme d’Epinal-Mirecourt en avril 2021 puisque cet aérodrome a été choisi pour qu’y soit déployé un pélicandrome, mobile dans un premier temps, en cas de risques sur les forêts des Vosges.
Arrivée du Milan 76 à Epinal en avril 2021. (Photo : Hervé Toutain)
Pour le déploiement à Angers, les équipiers étaient issus des pompiers du département du Morbihan. Pour leur formation, ils disposent, sur l’aérodrome de Vannes-Meucon, d’une zone pouvant temporairement être gréée en pélicandrome temporaire. Pour des raisons d’entraînement, les remplissages ne s’y font qu’à l’eau.
Inauguration du Pélicandrome mobile d’entraînement de Vannes-Meucon en 2016 avec le T11. (photo : Aéroport de Vannes)
L’installation a été inaugurée en 2016 avec des Tracker. Désormais, chaque printemps, la Sécurité Civile déploie un de ses avions en Bretagne pour une séance de formation indispensable. En 2021, les équipiers ont ainsi travaillé autour du Milan 77 tout juste entré en service.
Milan 77 s’avance sur le Pélicandrome de Vannes. (Photo : N. Georgelin/SDIS 56)
Dans le courant de l’été 2020, la presse s’est faite l’écho de la future installation d’un pélicandrome ambitieux à Chateauroux. L’implantation très centrale de cet aéroport, avec son trafic assez peu dense, permet d’envisager de nouveaux scénarios en défense de la zone région parisienne notamment. Une zone devrait être réhabilitée pour accueillir des réserves importantes de retardant ce qui va nécessiter d’importants travaux. En attendant, Chateauroux est également éligible à l’accueil d’une station mobile.
Les pélicandromes désaffectés
Le maillage du réseau de pélicandromes français a cependant évolué au cours des ans.
Des remplissages à l’eau étaient envisageables depuis l’aéroport de Saint-Étienne. Les personnels du SDIS 42 disposaient d’une remorque contenant tout le matériel nécessaire pour remplir un avion depuis un poteau d’incendie. Ce système, qui ne peut charger les avions qu’en eau, ce qui limite son intérêt, a été, au cours de son histoire, utilisé depuis Bron, Le Puy ou Vichy. Il semble avoir peu été sollicité ces dernières années et son statut réel mériterait d’être confirmé.
Le retrait de service des Tracker en 2020 a entrainé de facto l’arrêt des installations dédiées du Cannet/Le Luc dans le Var et celui d’Alès dans le Gard situés sur des aérodromes où les pistes sont trop courtes pour les Dash. Ces plateformes étant situées près de Hyères et de Nîmes, respectivement, ceci modifie peu les opérations.
Deux autres pélicandromes ont été aussi précédemment fermés, celui de l’aéroport de Nice créé en 1977 et qui a été délaissé après la saison 1997 et l’ouverture de celui de Cannes l’été suivant puis, plus récemment, celui d’Aix en Provence (créé en 1985).
Les capacités
Les capacités des PEL sont différentes d’une installation à l’autre, nombre d’avions pouvant être accueillis, quantité de retardant immédiatement disponible. Par exemple, le PEL de Bordeaux, qui n’accueille qu’un avion à la fois, dispose d’un réservoir de 60m3 de prémélange ce qui permet d’assurer plusieurs journées d’activité. Celui de Cannes, de son côté, qui pouvait accueillir deux Tracker simultanément, dispose d’une capacité de 100 m3.
Pour ne pas endommager les soutes des avions en ayant un débit supérieur à la résistance des réservoirs, les pompes utilisés pour les remplir ne peuvent pas débiter plus de 1800 litres par minute. Le débit moyen est néanmoins réglé à plus de 1000 litres minutes puisque, en général, le remplissage complet d’un Dash 8 (10 000 litres/10 tonnes de capacité) se fait entre 6 et 8 minutes.
Les personnels des Pélicandromes
Les équipiers sont des pompiers, volontaires comme professionnels confirmés, ainsi qualifiés au cours d’un stage de deux jours effectué directement sur la BSC de Nîmes. Une fois la qualification dite « PEL » acquise, elle est entretenue par un entraînement spécifique en début de saison effectué cette fois sur le Pélicandrome du SDIS concerné en présence d’un avion de la Sécurité Civile dont l’équipage joue un rôle essentiel dans la transmission des méthodes et des spécificités des appareils.
Une équipe type est composée de trois personnes qualifiées, un équipier est en charge des vannes (il est donc appelé le « vannier »), qu’il ouvre et ferme aux ordres pour charger la quantité demandée en fonction des opérations, un deuxième a pour rôle d’amener le tuyau jusqu’à l’avion, de le brancher et débrancher en fin de ravitaillement.
Ces deux équipiers PEL1 sont sous la supervision d’un chef d’équipe, qui a suivi un stage complémentaire PEL2, chargé de guider les avions pour les positionner sur la plateforme et de diriger l’ensemble de la manœuvre de ses équipiers notamment par gestes. Lui seul dispose d’une radio VHF FM pour prendre directement les consignes de l’équipage.
Les équipiers du pélicandrome de Valence à l’entraînement avec un Tracker en 2018. (Photo : SDIS 26)
En dehors du pélicandrome de Nîmes, les autres installations sont activées lorsqu’un feu survient et qu’il faut pouvoir ravitailler les appareils en action dans la région. Les équipiers affectés à ce poste pour la journée sont alors prévenus et se rendent sur l’aérodrome où il se préparent à recevoir les avions.
Certains jours de gros feux où les rotations s’enchaînent, le travail peut être réellement éprouvant car effectué dans un environnement difficile et stressant, avec le bruit des turbines, les avions restant moteurs tournants pour ne pas perdre de temps, et la chaleur mais aussi le danger permanent que représentent les pales des hélices en rotation.
Côté pilote
Lors des opérations sur pélicandrome, les équipages sont donc aux ordres du chef d’équipe qui guide l’avion. Une fois en place, les hélices sont mises en drapeau pour ne pas souffler les équipiers qui doivent circuler à hauteur de la soute pour brancher et débrancher le tuyau d’alimentation.
L’équipage a préalablement déterminé la quantité de retardant à charger en fonction du carburant restant pour ne pas dépasser la masse maximale autorisée au décollage de leur appareil. Ces indications sont communiquées par radio et/ou par les lampes du panneau de la soute en fonction de l’équipement de l’avion.
Le panneau des lampes de la soute d’un Q400MR. (Photo : B. Grison)
On le voit, l’usage du retardant nécessite bien plus que des avions, mais s’inscrit dans un système complexe faisant intervenir un grand nombre d’entités. Il faut des infrastructures fonctionnelles et des personnels formés et ceci ne s’improvise pas. Ce mode de fonctionnement, cette doctrine générale de lutte contre les feux, faisant appel à des moyens complémentaires a largement fait ses preuves depuis de nombreuses décennies.
Même si le ballet fascinant des Canadair à l’écopage peut paraître une arme absolue, elle n’est pas la seule ; le travail au retardant n’en possède pas moins de sérieux atouts opérationnels d’autant plus que, désormais, c’est un système parfaitement rodé dans notre pays.
Dans les guerres estivales menées par des aviateurs contre les feux de forêts, le choix des armes influe lourdement sur les méthodes de travail, les tactiques utilisées. Si l’eau reste l’outil principal de ce combat, la chimie a largement contribué à augmenter son efficacité. Les retardants « longs termes » tiennent une place à part dans les arsenaux des pompiers du ciel et méritent d’être expliqués.
Le retardant est l’arme de prédilection des Tanker. (Photo : Wes Schultz/Cal Fire)
Il existe deux types principaux de retardants :
Les retardants courts termes sont des agents tensio-actifs (« mouillants »), émulseurs (« moussants ») ou gélifiants (Thermo-gel) (1) injectés dans les largages des aéronefs capables de puiser l’eau dans les espaces naturels donc « écopeurs » (Canadair ou hélicoptères bombardiers d’eau) qui améliorent l’action de l’eau mais dont l’effet n’est pas particulièrement durable (2).
Le retardant long terme est l’outil de prédilection des « Tankers ». Puisque ces avions conventionnels ne peuvent écoper, ils doivent remplir leurs soutes au sol, de retour à un aérodrome disposant de l’équipement nécessaire. Plutôt que de les remplir d’eau autant en profiter pour utiliser des produits qui ne se trouvent pas à l’état naturel, pensés et conçus pour mieux combattre les incendies.
Pour le remplissage des aéronefs au retardant, il est nécessaire de disposer des installations adaptées. Ici le « Pélicandrome » de Marignane.
Deux des principaux retardants utilisés en Europe et aux USA sont apparus en 1959 : le Phos-Chek® à base de phosphate d’ammonium et le Fire Trol® utilisant le sulfate d’ammonium comme principe actif. Les compositions de ces produits ont ensuite singulièrement évolué et ils ont été rejoints sur ce marché par des solutions concurrentes élaborées par d’autres entreprises.
Le Fire Trol 931 utilisé en France est aujourd’hui composé de polyphosphates d’ammonium, d’argile, d’inhibiteur de corrosion et de colorants (oxyde de fer). Sa composition s’apparente à celle d’un engrais qui après son action contre le feu va favoriser la repousse des végétaux.
Le retardant est chimiquement neutre et en grande partie biodégradable. Il n’est toxique ni pour les hommes ni pour la faune ni pour la flore mais reste un produit irritant qui ne doit pas être ingéré et doit faire l’objet de protection de base pour les personnels à son contact direct. Il est fortement déconseillé, notamment, d’en faire usage à proximité d’un cours d’eau (100 mètres).
Extrait de la fiche produit du Firetroll 931 utilisé en France depuis de nombreuses années. C’est un produit qui nécessite des précautions d’usage, comme de nombreux autres.
extrait de la fiche de sécurité du Firetroll 931
Aux USA, certains parcs nationaux, pour préserver à tout prix le caractère naturellement sauvage et intact de leurs territoires en interdisent l’usage même lors des incendies majeurs ce qui nuit fortement à l’efficacité des moyens de lutte dans ces espaces effectivement précieux.
En France la compatibilité des produits proposés par les industriels du secteur chimique est validée notamment par le CEREN (Centre d’Essais et de Recherche de l’ENtente, liée à la Sécurité Civile) situé à Valabre près d’Aix en Provence. Ils doivent également répondre aux normes sanitaires européennes.
Remplissage des cuves de retardant dans les mélangeurs d’une base de Californie. La batte de Baseball sert à « détasser » la poudre qui sera mélangée à l’eau. (Photo : NIFC)
Le retardant est livré sous forme de poudre ou de pré-mélange qui doit ensuite être dilué pour obtenir la concentration idéale (20% de retardant prémélangé, 80% d’eau pour le Fire Trol 931) avant d’être stocké en attendant d’être chargé dans les avions. Le produit ainsi obtenu a une densité supérieure à celle de l’eau, une donnée essentielle quand il s’agit de remplir les soutes des avions.
Ainsi la soute du Dash 8 est limitée à 10 tonnes. Même si elle peut contenir 10 000 litres, le chargement maximum de l’avion sera de 9000 litres de retardant. Avec une densité idéale de 1,1 kg/litre la masse emportée sera effectivement de 9 900 kg.
Préparation du retardant à partir de pré-mélange lors d’une activation des C-130 MAFFS dans les années 2000. (Photo : USAF)
Ces produits agissent sur la pyrolyse, le mécanisme de dégradation chimique des éléments qui en fracturant les liaisons atomiques permet l’apparition des flammes. En recouvrant les végétaux, le principe actif du produit retarde la déshydratation et la décomposition de la cellulose qui constitue l’essentiel de la structure des végétaux, dont le bois. Alors que la cellulose se décompose à 150°C et brûle, le retardant offre aux végétaux une protection suffisante pour qu’il soit nécessaire d’atteindre des températures beaucoup plus élevées (certaines sources avancent la température de 700°C) avant que cette décomposition chimique n’intervienne.
Si le retardant n’est pas exposé au feu, il conserve ses propriétés même si l’eau qui compose 80 à 90% du produit déversé s’est évaporée. Ses propriétés se dégradent ensuite progressivement en fonction de son exposition au vent et à la pluie.
En quelques largages sur les flancs et en tête des flammes, le Gibraltar Fire, en octobre 2015, a été circonscrit à une trentaine d’hectares. L’intervention a été massive car ce feu aurait pu menacer les villes de Santa Barbara et Montecito. (Photo : Cal Fire)
Outre sa nature, sa consistance un peu pâteuse, qui lui permet de bien adhérer à la végétation, et sa composition, l’efficacité du retardant repose aussi sur son homogénéité et sa bonne répartition au sol pour que son effet « bouclier » ou « isolant » soit maximal. Les modes de fonctionnement des soutes des aéronefs jouent alors un rôle significatif. Sa couleur rouge, en raison de la présence d’oxyde de fer, permet aux équipages de repérer facilement les largages précédents et d’ajuster le leur en conséquence. Des systèmes existent désormais pour repérer ces positions par GPS afin que les largages suivants soient parfaitement positionnés pour ne laisser aucun trou dans la barrière.
Le retardant est également bien plus polyvalent que l’eau, même additionnée de retardants courts-termes, dans son usage : Largué directement sur les flammes il aura un effet équivalent voire supérieur à celui de l’eau en raison de sa masse et de sa viscosité supérieure. Largué en amont du front de flammes ou sur les flancs, il servira de barrière pour stopper ou canaliser le développement de l’incendie. Largué très en amont du front, il peut aussi servir de barrière de protection, une fonction très utile pour les secteurs isolés ou difficilement accessibles pour les moyens terrestres, ou d’appui pour un brûlage dirigé.
La torche que porte ce forestier américain ne laisse aucun doute sur sa mission du jour, établir un contre-feu. le P-3 Orion largue son retardant pour établir la barrière d’appui qui va protéger la végétation de l’autre côté. (Photo : NIFC)
Si on écoute les pilotes volants aux USA, ils expliquent que le retardant gagne à être largué d’assez haut. Les consignes officielles sont d’ailleurs très claires à ce sujet : « le retardant doit arriver sur le sol avec le moins de mouvement horizontal possible » (3). Il doit donc « pleuvoir » sur l’objectif. Il s’agit d’épandre le produit et non pas de le larguer dans la plupart des cas.
Le retardant largué trop bas va avoir une composante horizontale plus forte et en théorie ne recouvrir d’un pan de la végétation à protéger sur une surface plus limitée. Un largage plus haut aura de son côté le désavantage de ne pas pénétrer le couvert végétal si celui-ci a une canopée très dense. Le rôle du pilote est donc d’adapter sa hauteur en fonction de l’objectif et des conditions aérologiques du moment.
Si le travail des Tanker lourds est souvent d’établir les barrières en amont du front de flammes ou sur ses flancs, les largages directs existent et sont régulièrement pratiqués par tous les aéronefs, mais là encore, les hauteurs de largages des avions US restent visiblement supérieures à celle des largages au retardant des avions français.
Aux USA, les Tankers larguent le retardant depuis une hauteur parfois élevée pour que le produit arrive au sol avec le moins de mouvement horizontal possible. (Photo : 10 Tanker)
Au regard de sa polyvalence, le retardant n’a finalement qu’un défaut : il est coûteux. En 2014, le prix du retardant déversé sur les feux aux USA était de 50 cents le litre. En France, pour 2018, 2,4 millions d’euros d’autorisations d’engagement et de crédits de paiement ont été concédés pour l’achat de ces produits en prenant pour base la moyenne de la consommation sur la décennie écoulée (4) (5).
Livraison des sacs de retardant. L’usage de ces produits exige effectivement une certaine logistique. (Photo : RAAF)
D’autres coûts sont à prendre en compte comme celui des installations spécialisées sur les aérodromes, qui peuvent être fixes ou mobiles, et celui du personnel en charge de les entretenir et surtout de les activer car intervenir autour des avions parfois moteurs tournants demande aussi d’avoir des équipiers spécialement formés.
Installation temporaire de production de retardant en soutien des opérations anti-incendie en Australie. (Photo : CFA Discrict 13)
En France, l’utilisation du retardant remonte à l’époque des Catalina où le mélange était effectué en vol, après écopage, par le mécanicien navigant. Les PBY-6A, dont le système d’écopage fut rapidement considéré comme moins sûr que celui des PBY-5A, furent même rapidement réservés au remplissage au sol, une solution opérationnelle qui donna satisfaction.
La Protection Civile a utilisé du retardant depuis ses Catalina dès les années 60. (Photo : DR, Coll. F. Marsaly)
L’arrivée des DC-6 et des Tracker n’a fait que confirmer la complémentarité des attaques directe à l’eau par les avions écopeurs et l’usage du retardant au cours des missions GAAr, Guet Aérien Armé, ou par les frappes massives. Fokker 27, C-130 de location et désormais les Q400MR ont assuré ces missions sans interruption. Une telle expérience sur une période aussi longue serait insensées si elle n’avait pas fait concrètement ses preuves ! Il est même aussi possible, parfois, de voir des CL-415 français affectés à des missions GAAr larguer au retardant !
La France utilise du retardant depuis les années 60 et a évalué son premier Tanker en 1978, un DC-6. Les Q400MR d’aujourd’hui sont dans la continuité de cette histoire. (Photo : Alexandre Dubath)
L’usage du retardant, systématique aux USA et extrêmement fréquent en France, répond à des besoins spécifiques. Son efficacité à moyen ou long terme apporte une efficacité différente aux largages des aéronefs. Il est indissociable de l’usage des « Tankers » même si les « écopeurs » peuvent aussi en recevoir sans contre-indication. Moins médiatisé en France que les norias des Canadair, il constitue cependant une arme de premier choix, le budget qui lui est consacré chaque année en atteste. Les tâches écarlates laissées par les avions de lutte anti-incendie sur les forêts démontrent qu’il s’agit bien d’une arme de toute première importance dans ce combat.
(1) Le « Thermo Gel » a été notamment employé par le Martin Mars en Colombie Britannique. De son côté, la société française Advantagri avait reçu la médaille d’or catégorie « biomatériaux » au salon de l’Agriculture 2007 pour son retardant court terme « Gel Feu » à base de fécule de pommes de terre mais qui ne semble pas avoir été commercialisé.
(2) La durée de l’efficacité de ces retardants est inférieure à la demi-heure.
(3) Interagency Aerial Supervision Guide (IASG) 2011, Chapter 9 p101 – Tactical Aircraft Operations : « It is important for the retardant to “rain” vertically with little or no forward movement. »
(4) Avis sur le projet de loi de finances pour 2018 ; Sénat, 23 novembre 2017. La quantité de produit ainsi financée n’est pas indiquée.
(5) « Quant au retardant, il coûte environ 2 000 euros la tonne. » Rapport du Sénateur Jean-Pierre Vogel, 25 septembre 2019. Il s’agit du prix du prémélange facturé par le fabriquant.
Voici un nouveau sujet où l’auteur aurait été bien seul et bien démuni… Donc, encore merci à Jérôme, Francis, Cyril et Franck… un peu comme toujours !
Canadair est en fait le nom d’une entreprise aéronautique canadienne qui conçut à la fin des années 60 un avion amphibie spécialisé dans la lutte contre les feux de forêts très efficace grâce à sa capacité à écoper l’eau qu’il peut ensuite larguer sur les feux, le CL-215. L’entreprise est absorbée en 1986 par le groupe Bombardier qui poursuit la production de l’avion, crée une version à turbines, le CL-215T avant une version modernisée, le CL-415 dont la production se termine en 2015. Les droits de ces avions sont alors revendus à Viking Air, une autre entreprise aéronautique canadienne.
Un Canadair (CL-415) derrière un pas Canadair (Turbo Firecat)
Un CL-415 coûtait aux alentours de 30 millions d’Euros lorsqu’il était produit par Bombardier jusqu’en 2015. Le prix auquel il pourrait être commercialisé par Viking n’est pas encore connu avec précision.
Ça écope combien d’eau un Canadair ?
6200 litres. L’écopage, opération qui ne prend qu’une douzaine de secondes, se fait sur des plans d’eau, lac, étangs, fleuves ou zones littorales d’environ 2000 mètres de long pour garder de bonnes marges de sécurité. Il y en a environ 200 recensés dans toute la France dans un répertoire qui se trouve à bord des avions et sur les tablettes numériques des équipages. Les pilotes effectuent des reconnaissances pendant les périodes d’entraînement pour s’habituer à leurs caractéristiques géographiques .
Pourquoi n’a-t-on pas plus de Canadair ? pourquoi n’achète-t-on pas plus de Canadair ?
Parce que la flotte française a été dimensionnée en fonction du risque moyen. Il y a donc 12 CL-415, mais n’oublions surtout pas les 9 Turbo Firecat et les 2 Q400MR qui les épaulent et les complètent admirablement. Et pour le moment, l’avion n’est plus en production.
C’est vrai qu’ils sont vieux et pourris nos Canadair et qu’il faut les remplacer en urgence ?
Pas vraiment. Les CL-415 utilisés en France ont été livrés entre 1995 et 2007, ils ont donc une vingtaine d’années au maximum. Ils vieillissent mais ils ont encore du potentiel pour servir encore de nombreuses années. Il faut juste en prendre soin et leurs mécaniciens font vraiment tout leur possible pour ça, vraiment !
« Ce sont des avions qui ont entre 20 et 25 ans, qui sont en très bon état à partir du moment où ils sont entretenus et que les pièces détachées arrivent en temps et en heure. Aujourd’hui, notre problème est là. Nous n’avons plus les pièces détachées (1). Ce sont des avions qui vont aller jusqu’à 35, 40 ans, voire plus loin. À partir du moment où il est correctement entretenu, c’est un avion qui peut durer très longtemps. »
Même son de cloche du côté de chez Viking où un cadre commercial de l’entreprise nous a expliqué lors d’une conférence AFF : « Les avions de la famille CL-215 et CL-415 n’ont pas de limite de potentiel. Tant que les pièces de rechange seront disponibles, ces avions pourront être entretenus et rester opérationnels aussi longtemps que l’opérateur le voudra. » D’autre part, selon la même source, en 2018, le CL-415 qui a le plus d’heures de vol en est à environ 11 000… et ce n’est pas un avion français !
Et pourquoi on ne construit pas de Canadair en France ?
Le développement d’un avion est un processus long et coûteux. Or, les bombardiers d’eau ne représentent que quelques dizaines d’avions. La production totale des CL-215 et des CL-415 ne comprend qu’environ 220 avions construits entre 1969 et 2015. Sur cette même période, Airbus, par exemple, a produit environ 10 000 avions dont environ 6 800 de la seule famille A320. Les gros constructeurs ne s’intéressent donc pas à ce marché extrêmement réduit et peu porteur en raison de sa faible rentabilité.
Écope de Canadair. A la limite, on peut arriver à choper un poisson, mais un petit, pas un gros comme un mérou. Car on le voit bien, si le mérou passe là, le mérou pète ! (Aliano43)
Et l’histoire du plongeur ?
Tu veux ma main dans la gueule ?
Pourquoi ne pas larguer aussi de nuit ?
Parce que la différence entre la nuit et le jour, c’est qu’on y voit rien. A partir de là, voler près du sol sans visibilité est une prise de risque qui ne se justifie pas et les systèmes de vision nocturne ne sont pas encore vraiment utilisables pour ces missions (avions pas équipés ou pas adaptés, angle de vision des systèmes trop étroits en particulier). Néanmoins, des opérations nocturnes en VFR de nuit sont régulièrement effectuées par certains opérateurs d’hélicoptères HBE dans la région de Los Angeles. Lors de la saison des feux australienne 2017-2018, un S-61 de la société Coulson a effectué plusieurs largages de nuit sous JVN (dont le modèle n’a pas été spécifié) selon une procédure opérationnelle expérimentale spécifique. Désormais, l’objectif est de tenter rapidement une expérience similaire depuis un C-130, dans les mêmes conditions afin que, bientôt, la nuit ne constitue plus un obstacle à l’utilisation des aéronefs de lutte anti-incendie.
C’est quoi le liquide rouge que larguent certains avions ?
Largage retardant d’un C-130A Hercules (Col. J. Laval)
C’est du retardant. Un liquide composé d’eau et d’un composé chimique comprenant du phosphate ou du sulfate d’ammonium, de l’argile et des engrais. Il permet de retarder la combustion des végétaux jusqu’à 700°c au lieu de 150 normalement. C’est bien plus efficace que l’eau seule.
Sa couleur, qui varie selon les produits et les concentrations utilisées, permet aux équipages de repérer les zones précédemment traitées et ainsi d’établir de véritables barrières qui empêchent le feu de progresser, ou de le ralentir le temps que les équipes au sol se mettent en place, se repositionnent ou se mettent en sécurité ou que les renforts, aériens comme terrestres, arrivent.
Un Canadair est-il plus efficace qu’un Dash 8 ?
Les deux appareils sont complémentaires plus que concurrents. L’un utilise l’eau et frappe le front de flammes, l’autre utilise du retardant et « encadre » le feu. En utilisant conjointement les deux principes depuis plus de 40 ans, la Sécurité Civile a largement participé à diminuer les surfaces brûlées dans notre pays.
Francis A : Pilote de Q400MR depuis une dizaine d’années :
« Et que dire des temps de transit. Quand un CL fait 1 km, un Dash en fait presque 2. C’est aussi à prendre en compte. »
Comment on remplit un Dash 8 ? Il écope ?
Milan 73 sur le Pélicandrome de Marseille
Non, pas besoin. On ne trouve pas de retardant dans la Méditerranée, c’est la belle bleue, pas la belle rouge, non ? Donc, il est rempli en quelques minutes sur des aérodromes disposant d’installations de remplissage. Ce sont les fameux « Pélicandromes ».
Il y en a une douzaine entre le sud de la France et la Corse si bien qu’il y en a toujours un à quelques minutes de vol d’un incendie, quoi qu’il arrive, ce qui permet des rotations régulières et plutôt rapprochées.
Francis A. :
« La rapidité de rotations : oui, si on considère le nombre de largages à l’heure, on ne peut pas s’aligner avec un CL !!!!!! Mais on ne travaille pas à l’eau, mais au retardant. Ce n’est pas du tout pareil. Pas la tactique d’emploi, pas les mêmes objectifs. Les deux produits sont complémentaires et on a BESOIN des deux. »
Le Dash 8 est moins maniable, il ne peut pas aller partout, surtout dans le relief ?
Laissons encore la parole à Francis A. :
« Les capacités manœuvrières du Dash est un vieux serpent de mer qui date de son arrivée à Marseille en 2005. Comme tout avion, il a ses limites. Certes il est moins manœuvrant qu’un Canadair, mais au rapport poids / puissance, il n’y a pas photo. C’est de l’ordre du simple au double (de mémoire) en faveur du Dash.
Le relief : on refuse très rarement d’aller ici ou là. Cela peut arriver je le concède, mais comme tous autres avions. Je crois qu’on arrivera jamais à faire oublier toute cette encre et ce poison qui ont été déversés sur cet avion à son arrivée. Ce n’est peut être pas le meilleur, mais il fait le job et très bien de surcroit. »
Pourquoi achète-t-on six Dash supplémentaires pour remplacer les Tracker au lieu d’augmenter la flotte de CL-415.
Une des missions essentielles des Tracker est le GAAr (Guet Aérien Armé), des patrouilles menées pendant les moments à risques, permettant aux avions de pouvoir intervenir extrêmement rapidement dès qu’un feu est détecté et annoncé. Un avion rapide et lourdement équipé comme le Dash va permettre de poursuivre ces missions sans doute plus efficacement encore. 9 Tracker capables de voler avec 3000 litres de retardant à 200 kt vont être remplacés par 6 Q400MR capables de voler avec 9000 litres de retardant à 350 kt, c’est un amélioration des moyens. Ajoutons aussi que le Dash est multirôle et qu’il pourra être exploité pour d’autres missions, notamment de transport, tout au long du reste de l’année.
Francis A. :
Typiquement l’été on est amenés à armer trois circuits différents (plus éventuellement un en littoral fait par des CL). Il faut au moins deux moyens pour armer un circuit (2 x 2 S2F ou 2 x Dash), un sur le circuit et un pour le relever. Donc 3 x 2 = 6. Donc si on veut garder la vision d’aujourd’hui, CL en lutte, S2F en GAAR et Dash pour des barrières, (..) on arrive bien à 12 CL et 8 Dash !
Comment on devient pilote de Canadair ?
Les commandants de bord des avions de la Sécurité Civile, CL-415, Turbo Firecat et Q400MR, sont pratiquement tous d’anciens pilotes militaires de l’armée de l’air, de la marine ou de l’aviation légère de l’armée de terre. Ils ont un passé de pilote de chasse, de transport ou de patrouille maritime (classe A).
Les copilotes peuvent être de futurs commandant de bord en formation (classe A) mais certains sont de jeunes pilotes professionnels civils en contrat à durée déterminée (classe B) dont les plus motivés peuvent ensuite bénéficier d’un CDI. Ces pilotes à vocation co-pilote volent en place droite des CL-415 et des Q400MR.
Parce que Cambrai-Épinoy, ça commençait à faire loin !
Pourquoi pas un A380 bombardier d’eau, y’a bien un 747 ? Pourquoi ne pas transformer nos vieux avions militaires en bombardiers d’eau ? Pourquoi ?
Boeing 747-100 Supertanker d’Evergreen en 2009
Il est évident que les décisions sur le développement de la flotte française prennent en compte à la fois les besoins opérationnels et les nécessités économiques. Il faut savoir rester raisonnable dans ce domaine, surtout en cette période de difficultés économiques.
La Sécurité Civile bénéficie d’avions neufs ou récents, d’une base moderne et récente, c’est la preuve qu’elle n’est en rien abandonnée par les pouvoirs publics, loin s’en faut, même si toute augmentation budgétaire sera forcément appréciée !
Pour le moment, l’A380 ne constitue pas un candidat intéressant pour une conversion « tanker » bien qu’ on commence à trouver des avions de ce type sur le marché de l’occasion, mais ces appareils ont encore une chance de trouver une compagnie qui pourra les exploiter de façon conventionnelle. Outre les inévitables modifications qui devront être faites pour en faire un Tanker et leur validation par les organismes officiels, on peut s’interroger si les commandes de vol électriques des Airbus et leurs innombrables protections ne rendent pas ces avions inutilisables pour autre chose que les vols pour lesquels ils ont été parfaitement conçus. Tous les avions ne peuvent pas devenir des pompiers du ciel !
Il existe énormément de types d’avions (et d’hélicoptères) utilisables au feu, du petit monomoteur agricole au Boeing 747, c’est ce qui rend ce domaine si intéressant mais chaque avion a sa raison d’être et une carrière qui se développe en fonction de contextes et d’opportunités différentes, c’est aussi pour raconter et expliquer tout ça que 09-27.fr existe.
(1) il s’agissait d’un problème conjoncturel résolu depuis.
Publié le 29 juillet 2017, modifié le 20 janvier 2018, le 29 juillet 2018 et le 21 juillet 2019
En France, en Europe, l’image qui vient, lorsqu’on évoque la guerre aérienne contre les feux, est celle d’un avion jaune écopant sur un lac l’eau qu’il largue quelques minutes plus tard directement sur le feu. Cette scène est tellement forte et présente, l’avion jaune devenu tellement emblématique, qu’ils occultent totalement tout un pan des tactiques et techniques utilisées pour lutter contre les feux dans le reste du monde, mais aussi dans notre pays.
En France, CL-415 et Tracker constituent l’ossature des moyens aériens de lutte contre les feux de forêts. Deux avions, deux méthodes et une complémentarité évidente, même si le second souffre d’un déficit de notoriété publique.
Un peu d’histoire
L’utilisation d’avions pour lutter contre les feux de forêts remonte aux années 20 où certains aviateurs aventuriers américains commencèrent à larguer quelques sacs remplis d’eau sur les feux, sans grande réussite. Au Canada, des essais de largages furent effectués en 1944 à partir d’un hydravion Norseman mais le délestage se faisant par des tuyaux assez étroits, 7,62 cm de diamètre, l’efficacité ne fut pas au rendez-vous non plus.
Ce n’est qu’au début des années 50 que l’intérêt pour les aéronefs de lutte contre les feux de forêts fut relancé. Lors d’un essais en vol du prototype de l’avion de ligne Douglas DC-7 au dessus de l’aérodrome de Palm Springs en Californie, en 1953, l’équipage se délesta des 5 à 6000 litres de ballast destinés à simuler la charge utile de l’appareil. Ils mouillèrent visiblement une surface respectable pendant quelques minutes en dépit d’une forte chaleur et d’un faible taux d’humidité ambiante. Le 2 décembre suivant, le DC-7 procéda donc à un nouveau largage de 2400 gallons (9084 litres) sur le Rosemond Dry Lake à Los Angeles en présence des pompiers du California Department of Forestry. Même si le largage ne fut pas massif, puisque l’eau fut déversée par des buses de 7 pouces (17,18 cm), les résultats contre de petits foyers allumés pour l’occasion furent considérés comme encourageants. Dès lors, la possibilité de combattre un feu depuis le ciel en larguant massivement un agent extincteur étant établie, les tactiques et les matériels adaptés se développèrent immédiatement.
Ce sont les essais en vol du DC-7 qui ouvrirent l’ère des avions de lutte contre les feux. A noter que des quatre types d’avions Douglas représentés sur cette photo, trois (DC-3, DC-4 et DC-7) ont encore des exemplaires encore actifs comme pompiers du ciel ! (Photo : Douglas Aircraft Company)
Les écopeurs
Au Canada, la topographie des zones à risques ouvrait la perspective d’utiliser massivement de l’eau pour éteindre, ou au moins, ralentir la progression des sinistres en la prélevant directement dans les plans d’eau innombrables grâce à des hydravions spécialement équipés. Dans un premier temps, l’eau était pompée jusqu’au réservoir alors que l’avion se trouvait à l’arrêt sur le plan d’eau, mais rapidement, pour gagner du temps, l’hydravion procéda en écopant. Maintenu en mouvement à la surface d’un lac ou d’un étang, l’avion prélevait l’eau grâce à sa vitesse et par le biais d’ouvertures situées au niveau de sa ligne de flottaison. Cette méthode, qui demande quand même une grande rigueur de pilotage, fit rapidement la démonstration de ses possibilités.
L’écopage vu par un maître du cinéma, Steven Spielberg, pour l’inoubliable scène d’ouverture de son film « Always » (1989)
Les premiers bombardiers d’eau, en dépit de leurs capacités d’emport réduites, pouvaient multiplier les largages et obtenir des résultats visibles. Les premiers Beaver emportaient quelques centaines de litres.
Le premier Beaver construit a connu une longue carrière de bombardier d’eau au Canada. Il est désormais préservé au Musée de Sault-Ste-Marie dans l’Ontario. (Photo : CBHC)
Ils furent rapidement épaulés par des Catalina qui emportaient jusqu’à 5000 litres. Dès 1961, alors même que le concept d’avions écopeurs n’était en usage que depuis quatre ans, la Colombie Britannique employa un premier Martin Mars, hydravion géant récupéré en surplus auprès de l’US Navy, qui intervint cet été-là très efficacement contre plusieurs feux grâce à une capacité d’écopage de 27 000 litres, un record à l’époque.
En service pendant un demi-siècle ces avions ont très longtemps été les appareils disposant de la charge utile la plus impressionnante. Désormais à la retraite, l’avenir des Martin Mars est encore incertain. (Photo : J. Selman)
En 1963, la France, par proximité culturelle et surtout topographique, le sud de notre pays ne manquant pas de lacs, étangs et littoraux abrités, tout à fait écopables, se dota de ses premiers Catalina, basés à Marseille.
Un Catalina à Marseille dans les années 60. Certains détails indiquent clairement que ces avions pouvaient aussi être remplis au sol avec du retardant. C’est de là que le nom « Pélicandrome » tire son origine, « Pélican » ayant été alors choisi comme indicatif radio de ces avions.
A cette même époque, les ingénieurs de Canadair commencèrent à travailler sur un projet d’avion spécialisé capable d’écoper un peu plus de 5300 litres. Le CL-215 entra en service en 1969 et se montra rapidement parfaitement adapté à sa mission. En France, le désormais célèbre « Canadair » prit alors la succession des Catalina de la Protection Civile et imposa alors son image d’avion providentiel. Il en fut de même en Espagne, en Italie ou en Grèce, où le successeur à turbopropulseurs, le CL-415 trouva aussi sa place.
Une des deux écopes d’un CL-415. En dépit d’une taille réduite, elles permettent à cet avion de recharger les quelques 6000 litres de sa soute en une douzaine de secondes seulement. Redoutable de simplicité et d’efficacité. (Photo : Aliano43)
Eau et émulseur contre les flammes
L’eau larguée sur un feu agit de plusieurs façons. En imbibant le combustible elle diminue très légèrement sa sensibilité au feu et freine un petit peu sa propagation. En s’évaporant ensuite, elle fait diminuer la température et donc réduit l’énergie du sinistre. En étant larguée d’un aéronef, elle emmagasine aussi de la vitesse, de l’énergie potentielle, qui lui donne un effet de souffle qui modifie l’équilibre chimique et physique du comburant et agit ainsi notablement sur cet autre pan important du triangle du feu.
Image emblématique, bien que restrictive, de la lutte aérienne contre les feux de forêts, un largage d’eau depuis un Canadair, ici un CL-215T de l’aviation militaire espagnole, directement contre les flammes.
Le triangle du feu. Leçon numéro 1 du premier jour chez les pompiers. Supprimer, isoler ou réduire un des pans, c’est vaincre un feu.
En agissant ainsi sur les trois côtés du triangle du feu, l’eau fait la démonstration de ses incroyables capacités à éteindre les flammes. Ces avantages sérieux s’additionnent à la nature même de l’eau qui, dans de très nombreux endroits, est facile d’accès et pratiquement gratuite.
Mais l’eau n’est efficace vraiment qu’en effet immédiat. Elle n’est donc utilisable qu’en attaque directe en frappant les flammes. C’est pour cela que, très souvent, elle est utilisée additionnée à de l’émulseur pour obtenir un largage dit « au moussant ». A bord d’un CL-415, 300 litres d’émulseur peuvent être utilisés, ce qui autorise une vingtaine de largages.
A bord du CL-215 Pélican 23 préservé au Musée de l’Air du Bourget, les réservoirs additionnels de moussant, improvisés après la mise en service de l’avion, sont toujours à poste.
La mousse se comporte comme un film qui emprisonne des bulles d’air et qui, sous l’action de l’air, et aussi du feu, se dégrade et libère cet air. Cette couche épaisse et qui s’évapore plus longtemps que l’eau pure a deux actions. Elle isole le combustible du comburant et en se décantant, imbibe légèrement le combustible et améliore quelque peu ses capacités à résister à la pyrolyse pendant un temps largement supérieur à l’eau pure. Avec également la présence de tensio-actifs, donc d’agent « mouillant », la mousse recouvre plus efficacement les végétaux ce qui renforce aussi son action. Ce type de produit était autrefois appelé « retardant court terme » mais cette dénomination semble être tombée en désuétude désormais.
Mais les avions écopeurs n’ont pas que des avantages. Sur le plan opérationnel, les avions amphibies, à l’exception du jet Beriev 200, sont plus lents que leurs homologues terrestres. Un FireBoss aura du mal à dépasser les 150 kt, ce qui est la vitesse de croisière d’un CL-415 tandis qu’un Tracker vole sans problème à 200 kt et qu’un Dash 8Q400MR dépasse largement les 350 kt en croisière. Donc, plus le sinistre est éloigné d’un plan d’eau écopable et plus les tankers (1) ont leur raison d’être, d’autant plus que, bien souvent, ces derniers disposent d’une charge utile supérieure.
Les hydravions et avions amphibies sont aussi peu fréquents et d’une exploitation spécifique. Les types disponibles sur le marché de l’occasion sont peu nombreux et les avions encore en production très rares. Deux d’entre eux sont spécifiquement produits pour combattre les feux, le Beriev 200 en Russie et le Fire Boss chez Air Tractor aux USA.
Roll-out d’un nouveau Beriev 200 au printemps 2016, marquant le retour en production d’un avion qui n’a pas encore rencontré le succès escompté, en dépit de performances alléchantes. (Photo : Marina Lystseva)
Ces appareils ont donc un coût d’achat élevé pour leur catégorie, surtout si on le compare à celui d’un appareil terrestre équivalent… d’occasion puisque tous les autres appareils sont des conversions à partir de machines de seconde main. A titre d’exemple, un Beriev 200 est annoncé à un prix d’achat supérieur à 30 millions $ tandis qu’un DC-10 d’occasion avec un bon potentiel restant n’en vaudrait plus que… 5 !
Appareil spécifiquement construit pour lutter contre les feux, le FireBoss ne peut cacher sa filiation avec la famille d’avions agricoles qui a fait la renommée de son constructeur.
Les coûts d’exploitation sont difficiles à comparer mais il est de notoriété publique qu’un avion amphibie est coûteux à exploiter. Sa rareté rentre en ligne de compte mais aussi toute la surveillance et les réparations à effectuer avec une plus grande précaution en raison de la corrosion consécutive à sa proximité de l’eau, encore plus quand l’eau est salée.
Ainsi, les rapports parlementaires français expliquent que les coûts d’exploitations des CL-415 de la Sécurité Civile sont comparables à ceux des Q400MR dont les performances sont bien supérieures. Pour le Forest Service, les coûts de location parlent d’eux mêmes. Pour la saison 2016 ces tarifs étaient les suivants :
P2V Neptune, 7 570 litres : 18 000 $ par jour + 8 495 $ par heure de vol.
DC-10, 35 600 litres : 35 000 $ par jour + 13 600 $ par heure de vol.
CL-415, 6 056 litres : 54 246 $ par jour + 9 247 $ par heure de vol.
Avec un contrat de location à 54 246 $ par jour et 9 247 $ par heure de vol, le CL-415 Tanker 260 est l’avion le plus couteux de la flotte du Forest Service, bien plus même que les DC-10 ! (Photo : J. Dunn)
Le CL-415, qui était basé près du Lac Tahoe, à la frontière entre le Nevada et la Californie, était donc l’aéronef le plus coûteux de tous les appareils sous contrat. Des éléments techniques expliquent sans doute ce prix, mais les tarifs du Forest Service étant le résultat de négociations particulières avec les entreprises concernées, des explications non rationnelles peuvent avoir aussi joué dans ce prix à la journée tout à fait étonnant.
Les tankers
Dans de nombreux secteurs géographiques, l’eau n’est pas disponible en quantité. Il existe des espaces où il est plus facile de trouver un aérodrome qu’un plan d’eau écopable, en particulier aux USA et, donc, où le recours aux tankers, c’est à dire à des avions conventionnels convertis, devient plus logique.
Dans ce pays, l’expérience menée avec le DC-7 en décembre 1953 ouvrit la porte à un véritable foisonnement d’expérimentations en tous genres. En première ligne on retrouvait alors les avions agricoles et leurs pilotes pour qui, larguer de l’eau sur des feux ne les changeait pas trop de leur activité habituelle d’épandage de pesticides ou d’ensemencement.
Sur l’aérodrome de Willows en Californie, une plaque commémorative rappelle que c’est ici que tout a commencé…
L’expérimentation opérationnelle débuta à partir de Willows en Californie en 1955 avec le Stearman immatriculé N75081. Une véritable escadrille naquit ensuite mais les avions utilisés, n’avaient qu’une capacité d’emport de 170 gallons (643 litres), pas assez décisive.
Le Tanker 1, un avion historique. On est encore loin des avions superlatifs des années 2000… (Collection T. Chavez)
Très vite, les opérateurs, sentant qu’il y avait là un marché à prendre et des contrats à obtenir avec les collectivité locales, se sont intéressés aux avions survivants de la Seconde guerre mondiale stockés depuis la fin du conflit en attendant d’être ferraillés. B-17 Flying Fortress, A-26 Invader, B-25 Mitchell, F7F Tigercat ou PB4Y Privateer ont ainsi fait les beaux jours des entreprises de travail aérien américaines impliquées dans ce combat.
Le B-17, vétéran de la Seconde guerre mondiale, a été aussi un tanker respecté pour ses excellentes qualités de vol et sa fiabilité. Le Tanker 61 a été photographié à Long Beach en septembre 1968. Il est aujourd’hui préservé au statique au Castle Museum sous les couleurs du Virgin’s Delight. (Photo : René J. Francillon)
Les derniers TBM en service appartenaient à Forest Protection Ltd au Canada. Ils ont été remplacés par des Air Tractor au milieu des années 2000 ! (Photo : Forest Protection Ltd)
La disponibilité de ces avions et leur faible coût d’achat, ainsi que leurs charges utiles respectives en ont fait des appareils très prisés aux USA, mais aussi au Canada. Ce sont toutefois les TBM Avenger qui furent parmi les plus nombreux puisqu’on estime à environ 150 exemplaires différents qui participèrent à des missions de lutte contre les feux de forêts à un moment ou un autre. Cette imprécision est la conséquence de l’activité mixte de ces avions, pouvant parfois passer d’une utilisation purement agricole à une utilisation pompier par le seul changement du produit délivré.
Aujourd’hui encore, les tankers sont le fruit de conversions d’avions d’occasion, anciens militaires mais aussi, désormais, de jets de ligne délaissés par les grandes compagnies aériennes. Le faible coût d’acquisition de ces machines laisse une marge pour financer la transformation et maintenir l’équilibre financier de ces entreprises qui sont, bien souvent, économiquement prisonnières du Forest Service. Les évènements de 2002 et surtout de 2004, ont clairement montré les limites de ce système.
Si les avions écopeurs utilisent l’eau pour lutter contre les flammes, agent extincteur disponible en quantité et facile d’accès pour ce type d’appareils, les tankers ou airtanker, comme ils sont désignés aux USA, souffrent d’un déficit de productivité puisqu’il leur faut de toute façon retourner sur un aérodrome pour recharger leurs soutes d’agent extincteur. Cette opération peut prendre plusieurs minutes car il faut prendre en compte le temps d’intégration dans le circuit de l’aérodrome, le temps de roulage et celui du remplissage, lié à la puissance des pompes d’alimentation et le temps nécessaire pour repartir. Ce mode opératoire pourrait s’avérer très pénalisant, surtout pour les appareils les plus lourds. Certains, en particulier les DC-10, peuvent toutefois utiliser plusieurs points d’alimentation simultanément ce qui réduit d’autant leur temps d’immobilisation.
Moteurs tournants, ce Q400MR passe au « Pélicandrome » avant une mission d’entraînement. Les pompes débitent environ 1000 litres à la minute. Il faut donc 3 minutes pour remplir un Tracker et un peu moins de 10 pour un Dash.
Pour compenser cette lacune, et parce que l’expérience de l’aviation agricole et ses produits chimiques a largement servi de base au développement de ces nouvelles missions, très rapidement, l’eau seule n’est plus devenue l’arme essentielle de leur combat. Le fait d’avoir à recharger les soutes des airtankers auprès d’installations spécialisées permet d’utiliser des produits plus performants et d’un usage différent de l’eau. Si on n’oublie pas que les premiers tankers furent extrapolés d’avions agricoles spécialisés dans l’épandage de pesticides, et mis en œuvre par des équipages rompus aux opérations des « Crop Duster », il était logique, pour lutter contre les feux, de faire également appel à la chimie.
Le retardant
Dès les premières expérimentations aux USA à Willows au milieu des années 50, les tanker ont utilisé un produit non pas extincteur, mais retardant.
Largage massif d’un Convair 580 canadien aux USA en août 2016. La couleur du retardant permet de repérer facilement les zones déjà traitées. (Photo : InciWeb)
Dans un premier temps, des produits à base de chlorure de calcium, de phosphate de monoammonium ou de borax furent expérimentés, notamment lors de l’opération Firestop en 1955 en Californie. Mais ce sont des solutions à base de borate qui furent utilisées dans un premier temps, offrant à ces avions leur premier surnom « Borate Bombers ». Ensuite, ce fut au tour du phosphate de diammonium. Mais, en 1959 apparaissent deux retardants produits en quantité, le Phos-Chek® à base de phosphate d’ammonium et le Fire Trol® utilisant le sulfate d’ammonium comme principe actif.
Le retardant est un produit efficace mais couteux. Il est néanmoins inoffensif pour la faune et la flore. Il est livré par les industriel sous forme de poudre ou de pré-mélange qu’il faut encore diluer. (Dennis W. Goff/USAF)
Ces deux produits, toujours en usage de nos jours tout en ayant évolué dans leurs compositions respectives, agissent sur la pyrolyse, le mécanisme de dégradation chimique des éléments qui en fracturant les liaisons atomiques permet l’apparition des flammes. En recouvrant les végétaux, le principe actif du produit retarde la décomposition de la cellulose qui constitue l’essentiel de la structure des végétaux, dont le bois. Alors que la cellulose se décompose à 150°C et brûle, le retardant offre aux végétaux une protection suffisante pour qu’il soit nécessaire d’atteindre des températures beaucoup plus élevées (certaines sources avancent la température de 700°C) avant que cette décomposition chimique n’intervienne. Le gain de temps se trouve là.
Patch d’équipage de Tanker. Tout est dit. (Collection J. Laval)
Si le retardant n’est pas exposé au feu, il conserve ses propriétés même si l’eau qui compose encore 80% du produit déversé s’est évaporée. Ses propriétés se dégradent ensuite progressivement et en fonction de son exposition au vent et à la pluie.
L’efficacité du retardant repose aussi sur son homogénéité et sa répartition au sol. Les soutes à flux constant qui permettent d’adapter la densité du largage au type de végétation sont alors extrêmement utiles. Depuis quelques années, des expérimentations sont même faites pour repérer la position des largages par GPS afin que les largages suivants soient parfaitement positionnés pour ne laisser aucun trou dans la barrière ainsi posée.
Le retardant conserve ses propriétés jusqu’à ce que le vent et la pluie nettoient la végétation qu’il a protégé. Sur les feux de prairie, comme ici dans le Montana, il est d’une efficacité aussi redoutable qu’indéniable. (Photo : Montana DNRC)
Le retardant peut être utilisé en largage direct sur les flammes où il aura une action très proche de celle de l’eau. Largué en amont du front de flammes ou sur les flancs, il servira en revanche de barrière d’appui. Les applications de ces produits spécifiques sont plus variées que l’eau, ce qui compense largement les délais plus importants qu’il peut exister entre deux largages par un même aéronef.
De très nombreux largages ont été nécessaire pour bloquer ce feu, mais les dégâts sont restés très limités. Le retardant en application indirecte, ça marche ! (Photo : Cal Fire)
Le retardant est donc un produit terriblement efficace puisque spécifiquement conçu pour cet usage. Mais cette efficacité a aussi un coût. En 2014, chaque gallon de retardant largué par les avions en contrat avec l’US Forest Service a coûté aux contribuables US la somme de 2 $. Cette année là, 9 millions en ont été utilisés, soit un budget de 18 millions de dollars sur la saison.
Largage spectaculaire d’un DC-10 dans le Silverado Canyon (CA) en 2014. Exemple typique de largage indirect destiné à construire ou consolider une barrière de retardant dans une zone difficilement accessible aux véhicules pompiers et aux bulldozer.
D’autres coûts sont à prendre en compte comme celui des installations spécialisées sur les aérodromes, qui peuvent être fixes ou mobiles, et le coût du personnel en charge de les entretenir et de les activer. Mais là encore l’engagement de ces moyens est rarement fait au hasard.
Les Air Attack bases sont réparties sur l’ensemble du territoire californien. Ici celle de Chico, au nord de Sacramento.
Les voilures tournantes
Les avions, aéronefs à voilures fixes, ont donc, en fonction de certaines caractéristiques propres, des modes d’engagement différents. Ils sont souvent complétés, épaulés ou suppléés par les hélicoptères, qui, bien que plus discrets, n’en sont pas moins les aéronefs les plus utilisés contre les feux de forêts à l’échelle mondiale. Depuis les années 60, les hélicoptères légers, moyens ou lourds, ont réussi à trouver une place tout à fait particulière dans ce domaine.
Les HBE du Var en opérations depuis le lac du barrage du Revest dans l’arrière pays Toulonnais en août 2016. Ce sont des auxiliaires précis et efficaces et qui peuvent utiliser les plans d’eau inaccessibles à d’autres aéronefs.
Leur mode opératoire les place d’emblée dans la catégorie des écopeurs puisqu’ils peuvent prélever leur charge utile dans n’importe quel point d’eau même inaccessible autrement. Cette facilité d’emploi les rend indispensables sur feux d’autant plus qu’il peuvent aussi venir s’approvisionner en retardant si on leur offre cette possibilité avec des installations mobiles que les pompiers peuvent installer rapidement à proximité immédiate de la zone des opérations.
Les hélicoptères peuvent tout à fait opérer avec du retardant. Des installations provisoires et mobiles peuvent être installées à proximité des zones d’opérations. (Photo : Phos-Chek)
Même si leur vitesse est moindre que celle des voilures fixes, les hélicoptères compensent en opérant encore plus près du front. Si on peut s’étonner de ne pas voir d’avions écopeurs massivement en service aux USA, en Australie ou dans certaines provinces du Canada, c’est là qu’il faut trouver la réponse.
Les CH-47 obtenus auprès de l’US Army sont de plus en plus fréquents sur feux comme cet exemplaire en opérations sur le Tokewanna Fire en 2016. (Photo : InciWeb)
Dans ces régions où les points d’eau écopables sont rares, ce sont les HBE qui assurent la fonction de frappe massive avec un succès indéniable, d’autant plus que les sources d’approvisionnement utilisables peuvent quand même être nombreuses ou peuvent être acheminées mécaniquement par les pompiers ou les forestiers. Souvent, ces machines ont des capacités importantes, les hélicoptères lourds CH-47 ou CH-54 pouvant embarquer une dizaine de tonnes d’eau ou de retardant.
Largage à l’eau, au moussant ou même au retardant, les feux de forêts sont l’occasion de montrer la très grande polyvalence des hélicoptères.(Photo : Erickson Aircrane)
C’est donc aussi un des facteurs contributifs à la raréfaction des amphibies puisque leurs missions peuvent être assurées en partie par des voilures tournantes pour peu qu’elles soient prépositionnées idéalement pour éviter les longues liaisons. Les coûts des appareils sous contrat avec l’US Forest Service permettent de voir que les tarifs appliqués en 2016 aux voilures tournantes ne sont pas très éloignés des tarifs appliqués aux avions de même catégorie et de même capacité. Mais à la différence de nombreux tankers, les voilures tournantes ont l’insigne avantage d’être véritablement polyvalentes et être utilisables pour une large variété de missions dès que la saison des feux se termine.
CH-47D, 10 348 litres : 24 500 $ par jour + 7 394 $ par heure de vol
CH-54B, 10 319 litres : 22 150 $ par jour + 3 987 $ par heure de vol
S-70A, 5550 litres : 15 000 $ par jour + 3 933 $ par heure de vol
Les hélicoptères équipés d’un bambi-bucket sous élingue se transforment en quelques secondes en HBE efficaces et précis, capables de puiser l’eau dans des endroits incongrus comme ici dans la piscine de la base navale de l’US Navy à Naples lors d’un feu en 2004, ce qui permit alors d’abaisser le temps de rotation des machines à seulement 60 secondes. (Photo : Stephen Woolverton/ US Navy)
La Loi du nombre
Contrairement à ce qu’on pourrait penser, les avions écopeurs sont loin d’être majoritaires dans l’ensemble des flottes consacrées à lutter contre les feux de forêts. Ils ne l’ont d’ailleurs jamais été. Dès les origines du concept, les avions agricoles ont été les plus nombreux. Avec la famille des AgCat, des Thrush et des Air Tractor, ces avions restent très bien représentés mais depuis, les hélicoptères les ont supplantés. Seulement une poignée de types d’avions amphibies ont été utilisés pour ces missions ; Beaver, Otter, Twin Otter, Catalina, CL-215, CL-415, Beriev 200, FireBoss. Avec 221 exemplaires produits (125 CL-215 et 96 CL-415), la famille Canadair est la plus nombreuse.
A côté de ça, la liste des tankers comporte plus d’une trentaine de types principaux dont certains, comme les TBM, les B-17, les Lockheed Electra, les Neptune, les B-25, les S-2 Tracker, les C-130, les P-3 Orion, sans oublier les quadrimoteurs Douglas, ont compté parfois des dizaines d’exemplaires convertis. La représentation populaire de l’amphibie attaquant les flammes est donc spécifique aux zones géographiques où ces appareils sont effectivement parfaitement adaptés mais elle est loin d’être généralisée à l’échelle de la planète.
Contrairement aux idées reçues, les avions capables d’écoper sont loin d’être les plus fréquents en opérations contre les feux de forêts. Les avions agricoles, les hélicoptères, mais aussi les tankers, à l’échelle mondiale, sont bien plus répandus. (Photo : Beriev)
L’argumentaire simpliste et tellement autocentré faisant du Canadair la panacée au problème des feux de forêt ne doit cependant pas masquer plusieurs points essentiels. Là où les écopeurs amphibies disposent de la topographie adaptée, ils sont presque irremplaçables. Ailleurs, leur rôle d’attaque massive et répétée peut être parfaitement assumé par les voilures tournantes. Si on en juge par la situation française, l’usage conjoint et parfaitement organisé de ces différents moyens, bien utilisés en fonction de leurs qualités propres donne des résultats remarquables mais ce modèle ne peut pas être universel tant la topographie du pourtour septentrional de la Méditerranée, et en particulier le sud de notre pays, est idéale. La topographie aux USA explique la domination des tankers mais il ne faut alors pas oublier que les missions assurées par les CL-415 chez nous, le sont par des hélicoptères lourds, là bas.
Écopeurs et tankers ont donc leurs propres raisons d’être. Il est compliqué de démontrer que tel matériel et telle doctrine sont supérieurs à d’autres tant les contextes géographiques et économiques diffèrent d’un pays à l’autre, même d’une région à l’autre. Une étude objective des avantages de chaque moyen ne peut arriver qu’à une seule conclusion juste ; ces moyens s’épaulent mutuellement. Si ces deux principes cohabitent sur feux depuis plus de 60 ans, ça ne peut être un hasard !
L’avenir des avions de lutte contre les feux de forêts est désormais incarné par les jets, comme ce RJ-85 capable d’acheminer à grande vitesse plus de 12 tonnes de retardant. (Photo : Country Fire Authority)
Plus que leurs capacités d’emport, la différenciation opérationnelle des moyens aériens repose sur la dualité « écopeur » contre « tanker » car les manières d’approvisionner ces vecteurs déterminent aussi les types d’armes et les manières de les utiliser, et donc leur pertinence et leur efficacité. Fondamentalement, ces deux principes de base ont du mal à se substituer et bien au-delà, il peuvent être aussi, et c’est là une notion véritablement essentielle, complémentaires.
(1) Tanker est un mot très générique puisqu’il désigne tout autant les pétroliers que les avions ravitailleurs en vol. Il sert pourtant d’indicatif radio pour les avions aux USA, c’est pour cela que nous l’avons conservé. Le vocable le plus adapté pour les désigner dans notre langue serait « avion bombardier à retardant » (ABR) par opposition à « avion bombardier d’eau » (ABE).